Abstract
We present an approach for global exploration and mapping of unknown environments using a swarm of cyborg insects, known as biobots, for emergency response scenarios under minimal sensing and localization constraints. We exploit natural stochastic motion models and controlled locomotion of biobots in conjunction with an aerial leader to explore and map a domain of interest. A sliding window strategy is adopted to construct local maps from coordinate free encounter information of the agents by means of local metric estimation. Robust topological features from these local representations are extracted using topological data analysis and a classification scheme. These maps are then merged into a global map which can be visualized using a graphical representation, that integrates geometric as well as topological features of the environment. Simulation and experimental results with biologically inspired robotic platform are presented to illustrate and verify the correctness of our approach, which provides building blocks for SLAM with biobotic insects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.