Abstract

Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30m or more.Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials.For scale, analysis of overall classification accuracy and kappa values indicated that 8m spatial resolution (reaching kappa values of over 0.83) slightly outperformed the results obtained from 4m for the study area and five tree species under examination. The 30m resolution Hyperion image produced sound results (kappa values of over 0.70), which in some areas of the test site were comparable with the higher spatial resolution imagery when qualitatively assessing the map outputs. Considering input predictor sets, MNF bands performed best at 4 and 8m resolution. Optical bands were found to be best for 30m spatial resolution. Classification with MNF as input predictors produced better visual appearance of tree species patches when compared with reference maps. Based on the analysis, it was concluded that there is no significant effect of height information on tree species classification accuracies for the present framework and study area. Furthermore, in the examined cases there was no single best choice among the two classifiers across scales and predictors. It can be concluded that tree species mapping from imaging spectroscopy for forest sites comparable to the one under investigation is possible with reliable accuracies not only from airborne but also from spaceborne imaging spectroscopy datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call