Abstract

Self-adaptation endows a software system with the ability to satisfy certain objectives by automatically modifying its behavior. While many promising approaches for the construction of self-adaptive software systems have been developed, the majority of them ignore the uncertainty underlying the adaptation decisions. This has been one of the key inhibitors to widespread adoption of self-adaption techniques in risk-averse real-world settings. In this research abstract I outline my ongoing effort in the development of a framework for managing uncertainty in self-adaptation. This framework employs state-of-the-art mathematical approaches to model and assess uncertainty in adaptation decisions. Preliminary results show that knowledge about uncertainty allows self-adaptive software systems to make better decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.