Abstract

We model the innervation dynamics of interneurons in a cerebral cortex center A between the time of initial sensory input and acquisition of a sustained steady state. The model assumes that interneurons in A are heavily interconnected allowing synchronization. This invites modeling the dynamics by means of a discrete time map. The model takes into account the influence of excitatory and inhibitory cells and reflects the architecture of synapses along the axons. The acquisition of a sustained chaotic state is characterized by means of a natural invariant probability measure. The time to attain this probability measure can be estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.