Abstract

In many application domains, position information is of fundamental importance. However, unlike the case of outdoor positioning, producing an accurate position estimation in the indoor setting turns out to be quite difficult. One of the most common localisation strategies makes use of fingerprinting. Research in this area has been faced with a number of challenges, leading to the proposal of a number of localisation algorithms, sampling strategies, benchmark datasets, and representations of building information. This proliferation made the modeling of the indoor positioning domain quite hard from both a theoretical and a practical point of view. In this paper, we propose a general and extensible framework, based on a relational database, that pairs fingerprints with building information.We show how the proposed system successfully deals with a number of problems that affect indoor positioning, supporting a large set of relevant tasks. The source code of the framework is available online, as well as an implementation of it, that provides an interactive open repository of indoor positioning data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.