Abstract

Transportation cost accounts for a significant portion among the total cost of photovoltaics (PV) recycling. The transportation cost can be significantly reduced with a well-planned vehicle routing. A generic mathematical framework was developed to generate the optimal distribution scheme for transporting retired PV. A static and a dynamic recycling algorithms were created as the optimization tool in the framework. As for the output, the framework generates the optimal distribution scheme, the transportation cost of the optimal scheme, as well as the amount of End-of-life PV that each PV recycling center receives. A case study was included to test the effectiveness of the proposed framework. The optimal costs generated by two algorithms were compared with the baseline cost. As a result, the cost can be reduced by 53% when compared with the baseline. In addition, the static algorithm can obtain a result with decent accuracy and low computational cost.

Highlights

  • In 2015, 50.6 GW new solar photovoltaics (PV) were installed worldwide

  • The transportation cost conducted by Greedy Algorithm (GA) and Linear Program (LP) is the optimal cost as they are generated by optimization processes

  • The mechanism of the GA is recycling PVIS from the largest size to the smallest, while LP processes the optimization with the objective of minimizing the overall transportation cost

Read more

Summary

Introduction

In 2015, 50.6 GW new solar photovoltaics (PV) were installed worldwide. A 613 GW grid-connected solar power was forecasted by the end of 2019 all over the world [1]. The amount of PV installed in the United States in 2016 achieved 14.7 GW, doubling the amount of the year 2015. With the 39% renewable electric occupancy, solar energy has become the most used renewable electric energy in the United States in 2016. In 2016, PV installation in California accounted for 35% of the United States. The cumulative PV installation in CA has researched 17 GW [2]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.