Abstract
In this article, we propose a framework, called XAR-Miner, for mining ARs from XML documents efficiently. In XAR-Miner, raw data in the XML document first are preprocessed to transform either to an Indexed XML Tree (IX-tree) or to Multirelational Databases (Multi-DB), depending on the size of the XML document and the memory constraint of the system, for efficient data selection and AR mining. Concepts that are relevant to the AR mining task are generalized to produce generalized metapatterns. A suitable metric is devised for measuring the degree of concept generalization in order to prevent undergeneralization or overgeneralization. Resulting generalized metapatterns are used to generate large ARs that meet the support and confidence levels. A greedy algorithm is also presented in order to integrate data selection and large itemset generation to enhance the efficiency of the AR mining process. The experiments conducted show that XAR-Miner is more efficient in performing a large number of AR mining tasks from XML documents than the state-of-the-art method of repetitively scanning through XML documents in order to perform each of the mining tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.