Abstract

We present a framework to dynamize succinct data structures, to encourage their use over non-succinct versions in a wide variety of important application areas. Our framework can dynamize most state-of-the-art succinct data structures for dictionaries, ordinal trees, labeled trees, and text collections. Of particular note is its direct application to XML indexing structures that answer subpath queries [2]. Our framework focuses on achieving information-theoretically optimal space along with near-optimal update/query bounds.As the main part of our work, we consider the following problem central to text indexing: Given a text T over an alphabet Σ, construct a compressed data structure answering the queries char(i), rank s (i), and select s (i) for a symbol s ∈ Σ. Many data structures consider these queries for static text T [5,3,16,4]. We build on these results and give the best known query bounds for the dynamic version of this problem, supporting arbitrary insertions and deletions of symbols in T.Specifically, with an amortized update time of O(n ε ), any static succinct data structure D for T, taking t(n) time for queries, can be converted by our framework into a dynamic succinct data structure that supports rank s (i), select s (i), and char(i) queries in O(t(n) + loglogn) time, for any constant ε> 0. When |Σ| = polylog(n), we achieve O(1) query times. Our update/query bounds are near-optimal with respect to the lower bounds from [13].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.