Abstract
We describe a unified framework of aesthetic criteria and complexity measures for drawing planar graphs with polylines and curves. This framework includes several visual properties of such drawings, including aspect ratio, vertex resolution, edge length, edge separation, and edge curvature, as well as complexity measures such as vertex and edge representational complexity and the area of the drawing. In addition to this general framework, we present algorithms that operate within this framework. Specifically, we describe an algorithm for drawing any n-vertex planar graph in an O(n)×O(n) grid using polylines that have at most two bends per edge and asymptotically-optimal worst-case angular resolution. More significantly, we show how to adapt this algorithm to draw any n-vertex planar graph using cubic Bézier curves, with all vertices and control points placed within an O(n)×O(n) integer grid so that the curved edges achieve a curvilinear analogue of good angular resolution. All of our algorithms run in O(n) time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.