Abstract

Correcting simulated solar photovoltaic (PV) output poses challenges due to the limited availability of measured PV output data. This study introduces a framework for developing correction factors capable of adjusting bias errors in hourly simulated PV output across various levels of global horizontal irradiance (GHI). GHI-dependent correction factors are developed for each PV plant, with hourly simulated PV output validated against the measured output for 37 PV plants in South Korea. Performance evaluation using U95, a measure of model uncertainty, reveals a significant reduction (by up to 0.24) in prediction errors. The reduction is largely attributed to reductions of nMBE s (by up to 0.33) and partly to reductions of nRMSE s (by up to 0.11), demonstrating mitigation of both random and bias errors. The framework exhibits a promising reduction in forecasting errors for monthly energy yields and performance ratios. Given that the proposed framework requires a short length of training data (<4 months), its versatility allows for adoption by existing software packages relying on physical PV modeling, offering potential enhancements in forecasting accuracy for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call