Abstract

Jurisdictions currently provide information on winter road conditions through qualitative descriptors like bare and fully snow-covered. Ideally, these descriptors are meant to warn drivers beforehand about hazardous roads. In practice, however, discerning between safe and unsafe roads is sometimes unclear due to intermediate RSC classes covering too wide a range of conditions. This study aims at solving this safety ambiguity issue by proposing a framework for predicting collision likelihood within a road segment. The proposed framework converts road surface images into friction coefficients, which are then converted into continuous measurements through an interpolator. To find the best-performing interpolator, we evaluated geostatistical, machine learning, and hybrid interpolators. It was found that ordinary kriging had the lowest estimation error and was the least sensitive to changes in distance between measurements. After developing an interpolator, collision likelihood models were developed for segment lengths ranging from 0.5 km to 20 km. We chose the 6.5 km model based on its accuracy and intuitiveness. This model had 76.9% accuracy and included friction and AADT as predictors. It was also estimated that if the proposed framework were implemented in an environment with connected vehicles and intelligent transportation systems, it would offer significant safety improvements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call