Abstract

Here we employ and adapt the image-to-image translation concept based on conditional generative adversarial networks (cGAN) for learning a forward and an inverse solution operator of partial differential equations (PDEs). We focus on steady-state solutions of coupled hydromechanical processes in heterogeneous porous media and present the parameterization of the spatially heterogeneous coefficients, which is exceedingly difficult using standard reduced-order modeling techniques. We show that our framework provides a speed-up of at least 2,000 times compared to a finite-element solver and achieves a relative root-mean-square error (r.m.s.e.) of less than 2% for forward modeling. For inverse modeling, the framework estimates the heterogeneous coefficients, given an input of pressure and/or displacement fields, with a relative r.m.s.e. of less than 7%, even for cases where the input data are incomplete and contaminated by noise. The framework also provides a speed-up of 120,000 times compared to a Gaussian prior-based inverse modeling approach while also delivering more accurate results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.