Abstract

Pareto Front Learning (PFL) was recently introduced as an efficient method for approximating the entire Pareto front, the set of all optimal solutions to a Multi-Objective Optimization (MOO) problem. In the previous work, the mapping between a preference vector and a Pareto optimal solution is still ambiguous, rendering its results. This study demonstrates the convergence and completion aspects of solving MOO with pseudoconvex scalarization functions and combines them into Hypernetwork in order to offer a comprehensive framework for PFL, called Controllable Pareto Front Learning. Extensive experiments demonstrate that our approach is highly accurate and significantly less computationally expensive than prior methods in term of inference time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.