Abstract
We present a multimodal system for the recognition of manual signs and non-manual signals within continuous sign language sentences. In sign language, information is mainly conveyed through hand gestures (Manual Signs). Non-manual signals, such as facial expressions, head movements, body postures and torso movements, are used to express a large part of the grammar and some aspects of the syntax of sign language. In this paper we propose a multichannel HMM based system to recognize manual signs and non-manual signals. We choose a single non-manual signal, head movement, to evaluate our framework when recognizing non-manual signals. Manual signs and non-manual signals are processed independently using continuous multidimensional HMMs and a HMM threshold model. Experiments conducted demonstrate that our system achieved a detection ratio of 0.95 and a reliability measure of 0.93.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.