Abstract

In recent years, the rapid development of electric vehicles has raised a wave of innovation in lithium-ion batteries. The safety operation of lithium-ion batteries is one of the major bottlenecks restraining the development of the energy storage market. The temperature especially the internal temperature can significantly affect the performance and safety of the battery; therefore, this paper presented a novel framework for joint estimation of the internal temperature and state-of-charge of the battery based on a fractional-order thermoelectric model. Due to the nonlinearity, coupling, and time-varying parameters of lithium-ion batteries, a fractional-order thermoelectric model which is suitable for a wide temperature range is first established to simulate the battery’s thermodynamic and electrical properties. The parameters of the model are identified by the electrochemical impedance spectroscopy experiments and particle swarm optimization method at six different temperatures, and then the relationship between parameters and temperature is obtained. Finally, the framework for joint estimation of both the cell internal temperature and the state-of-charge is presented based on the model-based state observer. The experimental results under different operation conditions indicated that, compared with the traditional off-line prediction method, the model-based online estimation method not only shows stronger robustness under different initial conditions but also has better accuracy. Specifically, the absolute mean error of the estimation of state-of-charge and internal temperature based on the proposed method is about 0.5% and 0.3°C respectively, which is about half of that based on the off-line prediction method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.