Abstract

A blockchain network is a distributed system established by mutually distrusting participants to operate a blockchain, enabling them to manage critical information such as account balances or asset ownership without a centralised third party. Blockchain network deployment and evaluation have become prevalent due to the emerging blockchain use cases by enterprises, governments, and Internet of Things (IoT) applications, which demand private blockchains rather than participating in public ones. A blockchain network architecture drives deployment and evaluation activities. Nevertheless, practitioners must learn and perform error-prone activities to transform architecture into a blockchain network and evaluate it. Therefore, it is beneficial to automate these activities so that practitioners can focus on the architecture design, a valuable and hard-to-automate activity. The key challenges of such an automation framework are keeping up with the advances in blockchain technologies and the increasing complexity of blockchain network architecture. This paper proposes NVAL, a software framework that implements a novel architecture-driven, community-supported approach to automate blockchain network deployment and evaluation. NVAL accepts blockchain network architecture as input. It supports complex multi-channel blockchain networks, an increasingly prevalent architecture for private blockchain. The framework keeps up with blockchain technologies by leveraging platform-specific automation programmes developed by a practitioner community via runtime composition to handle new networks. We evaluated NVAL with a case study and showed that the framework requires only seven automation programmes to deploy 65 blockchain networks with 12 diverse architectures and generate 295 evaluation datasets. Furthermore, it consumes only 95.5 ms to plan and orchestrate the deployment and evaluation, which is minuscule compared to the total time required for deploying and benchmarking a blockchain network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.