Abstract

Burn is a common traumatic disease with high morbidity and mortality. The treatment of burns requires accurate and reliable diagnosis of burn wounds and burn depth, which can save lives in some cases. However, due to the complexity of burn wounds, the early diagnosis of burns lacks accuracy and difference. Therefore, we use deep learning technology to automate and standardize burn diagnosis to reduce human errors and improve burn diagnosis. First, the burn dataset with detailed burn area segmentation and burn depth labelling is created. Then, an end-to-end framework based on deep learning method for advanced burn area segmentation and burn depth diagnosis is proposed. The framework is firstly used to segment the burn area in the burn images. On this basis, the calculation of the percentage of the burn area in the total body surface area (TBSA) can be realized by extending the network output structure and the labels of the burn dataset. Then, the framework is used to segment multiple burn depth areas. Finally, the network achieves the best result with IOU of 0.8467 for the segmentation of burn and no burn area. And for multiple burn depth areas segmentation, the best average IOU is 0.5144.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.