Abstract

Integrated vehicle simulation models are being increasingly used to improve engineering efficiency and reduce the number of real-world prototypes needed to understand vehicle attributes and subsystem interactions. Each domain within the vehicle must be represented by its own model developed with the appropriate operating ranges, behaviors, fidelity, and interfaces needed to interact appropriately with other domains in the vehicle. Planning and managing the development of these models across a large, multidisciplinary group of engineers can be a significant effort. In particular, carefully managing each model's interfaces is crucial to enabling the entire process; missing or inappropriately used signals can cause significant issues when many separate domain models are integrated into a single simulation. To help system engineers better manage these interfaces across a broad variety of applications, a SysML-based modeling approach is proposed to describe these models and their interfaces formally and completely. However, even with a consistent modeling approach, creating and managing interfaces across a large number of domains and applications can be a significant, error-prone task. To reduce the amount of manual modeling work required and help scale the process for complex models, an interface management framework is proposed to help automate the process of importing existing interfaces, routing and visualizing them, and exporting model templates for developers to use when creating new models. By automating this process, it becomes significantly easier to reuse models across simulation architectures (rather than creating new models from scratch) and frees up resources to create more accurate simulations throughout a system's design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.