Abstract

This paper introduces a novel framework for the automated tracking of cells, with a particular focus on the challenging situation of phase contrast microscopic videos. Our framework is based on a topology preserving variational segmentation approach applied to normal velocity components obtained from optical flow computations, which appears to yield robust tracking and automated extraction of cell trajectories. In order to obtain improved trackings of local shape features we discuss an additional correction step based on active contours and the image Laplacian which we optimize for an example class of transformed renal epithelial (MDCK-F) cells. We also test the framework for human melanoma cells and murine neutrophil granulocytes that were seeded on different types of extracellular matrices. The results are validated with manual tracking results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.