Abstract

In this research, the architecture and the functionalities of the LAMBDA (Laboratory of Aircraft Multidisciplinary Knowledge-Based Design and Analysis) framework for the design, analysis, and optimization of civil aircraft are presented. The framework is developed in MATLAB R2022a and comprises a modular architecture, which gives the potential for the use of different methods and fidelities for each discipline. The methods can be selected from a set of built-in methods or custom user-defined scripts. Disciplinary modules of the LAMBDA are Requirements, Weight, Sizing, Geometry, Aerodynamics, Engine, Performance, Cost, Emission, and Optimization. This framework has been used for different types of design and optimization problems. When it is applied for the design and optimization of a novel regional TBW (Truss-Braced Wing) aircraft, the operating cost has been reduced by 7.7% in the optimum configuration compared to the base configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.