Abstract

A sorting algorithm is adaptive if it sorts sequences that are close to sorted faster than it sorts random sequences, where the distance is determined by some measure of presortedness. Over the years several measures of presortedness have been proposed in the literature, but it has been far from clear how they relate to each other. We show that there exists a natural partial order on the set of measures, which makes it possible to say that some measures are superior to others. We insert all known measures of presortedness into the partial order, and thereby provide a powerful tool for evaluating both measures and adaptive sorting algorithms. We further present a new measure and show that it is a maximal known element in the partial order, and thus that any sorting algorithm that optimally adapts to the new measure also optimally adapts to all other known measures of presortedness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.