Abstract
Traffic noise is a major health concern for people living in urban environments. Noise mapping can help evaluating the noise level for certain areas in a city. Traditionally, noise mapping is performed in 2D geographic information system (GIS). The use of 3D GIS is also emerging in noise mapping in recent years. However, the current noise-mapping platforms can only conduct noise evaluation for the outdoor environment and the indoor environment separately. In addition, related information about absorption coefficient and transmission loss (TL) in noise calculation is not properly retrieved and is often replaced with a single value. In this research, building information modelling (BIM) and 3D GIS are integrated in order to combine traffic noise evaluation in both outdoor environments and indoor environments in a single platform. In our developed BIM–GIS integration platform, the built environment is represented in a 3D GIS model that contains information at a high level of detail from BIM. With the integration with BIM, the 3D GIS model now has access to detailed indoor features such as interior walls and interior rooms. Noise evaluation could therefore be performed at a room level in the developed platform. Essential parameters such as absorption coefficient and TL can be extracted directly from BIM for noise calculation. The 3D GIS model is connected with detailed BIM so that any changes in the indoor and outdoor features can be reflected to each other. The Italian C.N.R model is modified and applied in the platform to conduct noise calculation. This paper presents the details for the development of the noise-mapping BIM–GIS platform based on ArcGIS. Two use cases were analysed to show the role of such platform in the decision-making process of both urban planning and interior design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.