Abstract

BackgroundRenal syndromes are occasionally reported in domestic animals. Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. Despite demonstrating striking phenotypic similarities, no obvious presence of pathogenic variants of this candidate gene were found. Therefore further analysis was required to decipher the genetic etiology of the condition.ResultsThe family history of the cases suggested the possibility of an autosomal recessive inheritance. Homozygosity mapping combined with sequencing of the whole genome of one case detected two associated non-synonymous private coding variants: A homozygous missense variant in the uncharacterized KIAA2026 gene (g.39038055C > G; c.926C > G), located in a 15 Mb sized region of homozygosity on BTA 8; and a homozygous 1 bp deletion in the molybdenum cofactor sulfurase (MOCOS) gene (g.21222030delC; c.1881delG and c.1782delG), located in an 11 Mb region of homozygosity on BTA 24. Pathogenic variants in MOCOS have previously been associated with inherited metabolic syndromes and xanthinuria in different species including Japanese Black cattle. Genotyping of two additional clinically suspicious cases confirmed the association with the MOCOS variant, as both animals had a homozygous mutant genotype and did not show the variant KIAA2026 allele. The identified genomic deletion is predicted to be highly disruptive, creating a frameshift and premature termination of translation, resulting in severely truncated MOCOS proteins that lack two functionally essential domains. The variant MOCOS allele was absent from cattle of other breeds and approximately 4% carriers were detected among more than 1200 genotyped Tyrolean Grey cattle. Biochemical urolith analysis of one case revealed the presence of approximately 95% xanthine.ConclusionsThe identified MOCOS loss of function variant is highly likely to cause the renal syndrome in the affected animals. The results suggest that the phenotypic features of the renal syndrome were related to an early onset form of xanthinuria, which is highly likely to lead to the progressive defects. The identification of the candidate causative mutation thus enables selection against this pathogenic variant in Tyrolean Grey cattle.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-016-0904-4) contains supplementary material, which is available to authorized users.

Highlights

  • Renal syndromes are occasionally reported in domestic animals

  • A single case of renal amyloidosis has been described in Iranian cattle (OMIA 000040–9913) [2] and various forms of renal dysplasia have been reported in other cattle (OMIA 001135–9913) [3,4,5,6,7,8,9]

  • Pedigree analysis and homozygosity mapping suggests a recessive inheritance The pedigree of the established Tyrolean Grey cattle family was consistent with a possible monogenic autosomal recessive inheritance (Fig. 1)

Read more

Summary

Introduction

Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. In Japanese Black cattle, inherited xanthinuria is associated with growth retardation and death at approximately 6 months of age (OMIA 001819–9913) [14] This autosomal recessive inherited disease has been associated with a 3 bp deletion in the coding region of the molybdenum cofactor sulfurase (MOCOS) gene. In a single genetically uncharacterized Galician Blond beef calf, signs of listlessness and weight loss and renal failure with bilateral nephrolithiasis, composed of 100% xanthine were reported [15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call