Abstract

The paper illustrates a solution approach for the Saint-Venant flexure problem which preserves a pure objective tensor form, thus yielding, for sections of arbitrary geometry, representations of stress and displacement fields that exploit exclusively frame-independent quantities. The implications of the availability of an objective solution to the shear warpage problem are discussed and supplemented by several analytical and numerical solutions. The derivation of tensor expressions for the shear center and the shear flexibility tensor is also illustrated. Furthermore, a Cesaro-like integration procedure is provided whereby the derivation of a frame-independent representation of the displacements field for the shear loading case is systematically carried out via the use of Gibbs’ algebra. The objective framework presented in this paper is further exploited in a companion article (Serpieri, in J. Elast. (2013)) to prove the coincidence of energetic and kinematic definitions of the shear flexibility tensor and of the shear principal axes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.