Abstract

We have developed a fragment molecular orbital (FMO)-multi-component MO (MC_MO) method to analyze isotope effect due to differences between the quantum effects of protons and deuterons for large molecules such as proteins and DNA. The FMO-MC_MO method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously, and can directly express isotope effects, including coupling effects between nuclei and electrons. In our calculations of two polyglycines, which serve as prototypes for biological molecules, by this method, we clearly observed the geometrical relaxation induced by the HD isotope effect in the intramolecular hydrogen bonding portions of the molecules. The HD isotope effect on the interfragment interaction energy, including that of the hydrogen bonding parts, was also demonstrated: the hydrogen bond was weakened by replacement of hydrogen with deuterium. We also developed electrostatic potential approximations for use in the FMO-MC_MO calculations, and the accuracy of the energy differences induced by the isotope effect was independent of the approximation level of the FMO-MC_MO. Our results confirmed that the FMO-MC_MO method is a powerful tool for the detailed analysis of changes in hydrogen bonding and interaction energies induced by the HD isotope effect for large biological molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.