Abstract

The Sliding Safety Factor (SSF) is a crucial criterion for the sliding stability evaluation of concrete dam structures. A concrete gravity dam subjected to strong earthquakes undergoes progressive fractures, in addition to pre-existing fractures, at the dam–foundation interface, which causes a reduction in the shear strength against sliding. In this study, a new SSF is suggested to take account of the progressive fractured area at the dam–foundation interface. A contact and sliding model for the dam–foundation system is also suggested to compute the dynamically varying normal forces and sliding motions for the suggested SSF. To investigate the effect of the progressively fractured area on the sliding safety evaluation, the conventional, improved, and newly suggested SSFs are compared using the dynamic seismic analysis results of a concrete gravity dam. The conventional formulation of the SSF, in which the fractured area is not represented, yields extremely overestimated sliding safety judgements when a dam is subjected to strong earthquakes. On the other hand, the newly suggested SSF with the proposed contact–sliding model provides more realistic and conservative sliding safety evaluation results than the others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call