Abstract

A method for assessing likelihood of brittle fracture in cyclically loaded steel assemblies subjected to inelastic strains is proposed. The method proposed is based upon relationships between monotonic and cyclic endurance of steel specimens proposed by Kuwamura and Takagi, and analysis of crack tip opening displacement (CTOD), Charpy V-Notch (CVN) and tensile results of pre-strained, fatigue pre-cracked and side-grooved specimens of constructional steel. The proposed method allows the influence of displacement ductility classification (as used in seismic design of structures), notch geometry, and cyclic strain amplitude history on crack initiation to be incorporated into a single design analysis approach. Small scale CTOD testing of steel materials with various levels of pre-strain may be used to identify stress intensity and crack tip displacement at crack initiation for use in the analysis. The integration of a fracture mechanics based approach to analysing stress intensity in conjunction with assembly plastic deformation characteristics derived from finite element modeling offers the promise of an improved approach to steel assembly design for cyclic plastic endurance and should result in more reliable structures and reduced need for large scale testing. This has particular relevance to the structural design of seismic resisting steelwork assemblies which are expected to develop dependable ductile behaviour under high strain variable amplitude cyclic actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call