Abstract

Metallographic and fractographic studies of crack growth in nickel polycrystals and single crystals in a number of environments are described. “Brittle” intercrystalline and transcrystalline cleavage-like fractures were observed for specimens tested in liquid mercury, liquid lithium, liquid sodium, gaseous hydrogen, and for hydrogen-charged specimens tested in air. “Brittle” fractures were associated with considerable slip, and dimples/tear ridges were observed on fracture surfaces, suggesting that crack growth occurred by localized plastic flow. There were remarkable similarities between adsorption-induced liquid-metal embrittlement and hydrogen-assisted cracking which, along with other observations, suggested that adsorbed hydrogen at crack tips was responsible for hydrogen-assisted cracking. It is concluded that adsorbed atoms weaken interatomic bonds at crack tips thereby facilitating the nucleation of dislocations and promoting crack growth by localized plastic flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call