Abstract
This paper proposes a novel fractional-order two-surface constitutive model for over-consolidated clays within the framework of the fractional plasticity and bounding surface theories. It incorporates the stress-fractional operator of the loading surface into isotropic and progressive hardening rules, thus obtaining an incremental stress–strain relation without an explicit plastic flow rule. The proposed fractional-order model can replicate the main features of over-consolidated clays well, including stiffness non-linearity, the occurrence of plastic strains before high peak strength, non-associativity, weak/strong dilatancy, and cyclic behavior. In model simulations on a set of element tests along different loading paths on natural Boom clay and remolded Fujinomori clay, the proposed model reveals better agreement than the modified Cam-Clay model (MCC). Next, the fractional-order model, ACC-2 model and MCC model are implemented via a user-defined material subroutine in ABAQUS with an explicit integration scheme based on the forward modified Euler method with automatic sub-stepping and error control. The different models are then applied to the fully coupled two-dimensional hydromechanical modeling of the excavation of two deep underground galleries in natural Boom clay. The results ultimately verify the validity and applicability of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.