Abstract

In order to better understand the shear creep behavior of weak interlayers (carbonaceous shale) under the coupling effect of the rainfall dry–wet cycle and blasting vibration, as well as quantitatively characterize the coupled damage of the rainfall dry–wet cycle and blasting vibration, a series of shear creep tests were carried out. The results show that the combined damage of the rainfall dry–wet cycle and blasting vibration greatly intensifies the creep effect of carbonaceous shale, leading to an increase in deceleration creep time, an increase in steady-state creep rate, and a decrease in long-term strength. The coupling damage of the rainfall dry–wet cycle and blasting vibration in carbonaceous shale was quantitatively characterized. Based on the fractional-order theory, a fractional-order creep-damage constitutive model (DNFVP) was established by introducing the Abel dashpot to describe the coupled damage of the rainfall wet–dry cycle and blasting vibration and the nonlinear creep acceleration characteristics. The three-dimensional creep equation of the model was derived. The effectiveness of the DNFVP model was verified through the inversion of model parameters and fitting of experimental data, providing a basis for in-depth research on the long-term stability of high slopes in mines with weak interlayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.