Abstract
Two different fractionally spaced extensions of the SubGradient based Blind equalization Algorithm (SGBA) are provided. The first one is the direct extension of the linearly constrained SGBA for the symbol spaced setting. The second extension is the weighted and the 2-norm constrained fractionally spaced SGBA (FS-SGBA) algorithm. It is proven that the latter algorithm is globally convergent to a perfect equalization point under the well-known equalizability conditions for the fractionally spaced setting. The simulation results provided illustrates the relative merit of the proposed algorithm in comparison to the state of the art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.