Abstract

Given the limited medical resources in most cholera endemic countries, in this paper, a nonlinear fractional SVIR-B (Susceptible-Vaccinated-Infected-Recovered, Bacterial) cholera epidemic model with imperfect vaccination and saturated treatment is proposed and investigated. The model performs well-posed in both epidemiologically and mathematically, especially, we demonstrate the positivity and boundedness of all solutions using the generalized mean value theorem. The control reproduction number is derived using the next generation matrix method and both local and global stability analyses for the disease-free equilibrium is performed by analyzing the characteristic equation and using Lyapunov functional. Then, the existence and stability of endemic equilibria are further addressed. Sufficient conditions for the existence of backward bifurcation and Hopf bifurcation are also derived. Subsequently, an optimal control problem with vaccination, media coverage, treatment, and sanitation as control strategies is proposed and analyzed, providing a rationale for cholera control and prevention. In addition, several numerical examples are employed to illustrate our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call