Abstract

The time-dependent, three-dimensional incompressible Navier-Stokes equations are presently solved in generalized coordinate systems by means of a fractional-step method whose primitive variable formulation uses as dependent variables, in place of the Cartesian components of the velocity: (1) pressure (defined at the center of the computational cell), and (2) volume fluxes across the faces of the cells. The momentum equations are solved by means of an approximate factorization method. A novel 'ZEBRA' scheme incorporating four-color ordering efficiently solves the Poisson equation. Illustrative two- and three-dimensional laminar flow test cases are computed and evaluated relative to extant numerical and experimental results, and good agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call