Abstract
The time-dependent, three-dimensional incompressible Navier-Stokes equations are presently solved in generalized coordinate systems by means of a fractional-step method whose primitive variable formulation uses as dependent variables, in place of the Cartesian components of the velocity: (1) pressure (defined at the center of the computational cell), and (2) volume fluxes across the faces of the cells. The momentum equations are solved by means of an approximate factorization method. A novel 'ZEBRA' scheme incorporating four-color ordering efficiently solves the Poisson equation. Illustrative two- and three-dimensional laminar flow test cases are computed and evaluated relative to extant numerical and experimental results, and good agreement is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.