Abstract

This paper presents a fractional Schrodinger equation and its solution. The fractional Schrodinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrodinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrodinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call