Abstract

The mechanical behaviour of materials can be described by a phenomenological relationship that binds strain to stress, by the complex modulus function: M(ω), which represents the frequency response of the medium in which a transverse mechanical wave is propagated. From the experimental measurements of the internal friction obtained when varying the frequency of a transverse mechanical wave, the parameters that characterize the complex module are determined. The internal friction or loss tangent is bound to the dissipation of the specific mechanical energy. The non-equilibrium thermodynamics theory leads to a general description of irreversible phenomena such as relaxation and viscosity that can coexist in a material. Through the state variables introduced by Ciancio and Kluitenberg, and applying the fractional calculation due to a particular memory mechanism, a model of a viscoanelastic medium is obtained in good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call