Abstract

In this paper, we propose a fractional‐order delay differential model for tuberculosis (TB) transmission with the effects of endogenous reactivation and exogenous reinfections. We investigate the qualitative behaviors of the model throughout the local stability of the steady states and bifurcation analysis. A discrete time delay is introduced in the model to justify the time taken for diagnosis of the disease. Existence and positivity of the solutions are investigated. Some interesting sufficient conditions that ensure the local asymptotic stability of infection‐free and endemic steady states are studied. The fractional‐order TB model undergoes Hopf bifurcation with respect to time delay and disease transmission rate. The presence of fractional order and time delay in the model improves the model behaviors and develops the stability results. A numerical example is provided to support our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.