Abstract

We study the numerical solutions of nonlinear fractional delay differential equations (DEs) and nonlinear fractional pantograph DEs. We introduce a new class of functions called fractional‐order generalized Taylor wavelets (FOGTW). We provide an exact formula for computing the Riemann‐Liouville fractional integral operator for FOGTW by using the regularized beta functions. By applying the formula and collocation method, we reduce the given nonlinear fractional delay DEs and nonlinear fractional pantograph DEs to a system of algebraic equations. The FOGTW method together with the exact formula is very efficient for solving the nonlinear fractional delay DEs and nonlinear fractional pantograph DEs and give very accurate results. Several examples are given to demonstrate the effectiveness of the present method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.