Abstract

In this paper, a control strategy based on fractional calculus for visual servoing systems is proposed. The image-based control strategy is designed using a point features based fractional-order PI controller. A real-time visual servoing system, composed of a manipulator robot with 6 degrees of freedom (d.o.f.) with an eye-in-hand camera, is used for performance evaluation of the proposed control strategy. The image acquisition and processing, together with the computing of the image-based control law are implemented in MATLAB. Using planar static objects, real-time experiments are conducted and the results reveal that the image-based fractional-order PI controller outperforms the conventional image-based integer-order PI controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.