Abstract

A better comprehension of the behavior of shale gas transport in shale gas reservoirs will aid in predicting shale gas production rates. In this paper, an analytical apparent permeability expression for real gas is derived on the basis of the fractal theory and Fick’s law, with adequate consideration of the effects of Knudsen diffusion, surface diffusion and flexible pore shape. The gas apparent permeability model is found to be a function of microstructural parameters of shale reservoirs, gas property, Langmuir pressure, shale reservoir temperature and pressure. The results show that the apparent permeability increases with the increase of pore area fractal dimension and the maximum effective pore radius and decreases with an increase of the tortuosity fractal dimension; the effects of Knudsen diffusion and surface diffusion on the total apparent permeability cannot be ignored under high-temperature and low-pressure circumstances. These findings can contribute to a better understanding of the mechanism of gas transport in shale reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call