Abstract

A prediction model of thermal contact conductance is developed. Engineering rough surfaces are characterized by three-dimensional fractal Weierstrass-Mandelbrot fractal function. Three deformation modes, including fully plastic deformation, elasto-plastic deformation and elastic deformation, are considered to analyze the contact mechanism. Fractal surface and three deformation modes are incorporated into the calculation of thermal contact conductance. A comprehensive thermal contact conductance computation model considering both base thermal resistance and constricted thermal resistance is established. The results show that thermal contact conductance increases with the increase of normal contact pressure; the relative contribution of constricted resistance component to base resistance component tends to increase with the increase of normal contact pressure; fractal dimension and fractal roughness both have significant influences on thermal contact conductance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call