Abstract

One of the key tasks related to proteins is the similarity comparison of protein sequences in the area of bioinformatics and molecular biology, which helps the prediction and classification of protein structure and function. It is a significant and open issue to find similar proteins from a large scale of protein database efficiently. This paper presents a new distance based protein similarity analysis using a new encoding method of protein sequence which is based on fractal dimension. The protein sequences are first represented into the 1-dimensional feature vectors by their biochemical quantities. A series of Hybrid method involving discrete Wavelet transform, Fractal dimension calculation (HWF) with sliding window are then applied to form the feature vector. At last, through the similarity calculation, we can obtain the distance matrix, by which, the phylogenic tree can be constructed. We apply this approach by analyzing the ND5 (NADH dehydrogenase subunit 5) protein cluster data set. The experimental results show that the proposed model is more accurate than the existing ones such as Su's model, Zhang's model, Yao's model and MEGA software, and it is consistent with some known biological facts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.