Abstract

A fractal analysis of permeability for power-law fluids in porous media is presented based on the fractal characters of pore size distributions and tortuous flow paths/streamlines in the media. The proposed permeability model for power-law fluids in porous media is expressed as a function of the fractal dimensions of pore size distributions and tortuous flow paths/streamlines, porosity and microstructural parameters, as well as power exponent, and there is no empirical constant in the proposed model and every parameter in the model has clear physical meaning. The results predicted by the present fractal permeability model show that the model predictions (as the power exponent is 1) are in agreement with the available experimental data, and the predicted permeabilities (as the power exponent is not equal to 1) increase with the power exponent, which is also consistent with the physical situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.