Abstract
Advances in hardware platforms boosted the use of Convolutional Neural Networks (CNNs) to solve problems in several fields such as Computer Vision and Natural Language Processing. With the improvements of algorithms involved in learning and inferencing for CNNs, dedicated hardware architectures have been proposed with the goal to speed up the CNNs' performance. However, the CNNs' requirements in bandwidth and processing power challenge designers to create architectures fitted for ASICs and FPGAs. Embedded applications targeting IoT (including sensors and actuators), health devices, smartphones, and any other battery-powered device may benefit from CNNs. For that, the CNN design must follow a different path, where the cost function is a small area footprint and reduced power consumption. This paper is a step towards this goal, by proposing an architecture for the main modules of modern CNNs. The proposal uses as case-study the Alexnet CNN, targeting Xilinx FPGA devices. Compared to the literature, results show a reduction up to 9 times in the amount of required DSP modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.