Abstract

A fourth order finite difference method is presented for the 2D unsteady viscous incompressible Boussinesq equations in vorticity-stream function formulation. The method is especially suitable for moderate to large Reynolds number flows. The momentum equation is discretized by a compact fourth order scheme with the no-slip boundary condition enforced using a local vorticity boundary condition. Fourth order long-stencil discretizations are used for the temperature transport equation with one-sided extrapolation applied near the boundary. The time stepping scheme for both equations is classical fourth order Runge–Kutta. The method is highly efficient. The main computation consists of the solution of two Poisson-like equations at each Runge–Kutta time stage for which standard FFT based fast Poisson solvers are used. An example of Lorenz flow is presented, in which the full fourth order accuracy is checked. The numerical simulation of a strong shear flow induced by a temperature jump, is resolved by two perfectly matching resolutions. Additionally, we present benchmark quality simulations of a differentially-heated cavity problem. This flow was the focus of a special session at the first MIT conference on Computational Fluid and Solid Mechanics in June 2001.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.