Abstract

A fourth order fourstep ADI method is described for solving the systems of ordinary differential equations which are obtained when a (nonlinear) parabolic initial-boundary value problem in two dimensions is semi-discretized. The local time-discretization error and the stability conditions are derived. By numerical experiments it is demonstrated that the (asymptotic) fourth order behaviour does not degenerate if the time step increases to relatively large values. Also a comparison is made with the classical ADI method of Peaceman and Rachford showing the superiority of the fourth order method in the higher accuracy region, particularly in nonlinear problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.