Abstract

The fourth order accuracy finite difference scheme is known advantageous in reducing memory and improving efficiency. Summation-by-parts finite difference operator is a natural way for wavefield simulation in complicated domains containing surface topography and irregular interfaces. The application of summation-by-parts method guarantees the stability of numerical approximation for heterogeneous media on curvilinear grids. This paper extends the second order summation-by-parts finite difference method to the fourth order case for the discretization of acoustic wave equation and perfect matched layer in boundary-conforming grids. In particular, the implementation of the fourth order method for wavefield simulation and reverse time migration in complicated domains can significantly improve the efficiency and decrease the storage. The elliptic method is applied for boundary-conforming grid generation in complicated domains. Under such grids, the two-dimensional acoustic wave equation in second order displacement formulation is compactly reformulated for forward modeling and reverse time migration, and the symmetric and compact form of perfectly matched layers expressed in a curvilinear coordinate system are applied to suppress artificial reflections. The discretizations of the acoustic wave equation and perfectly matched layer formula are fourth and second order accuracy in space and time respectively, where the spatial discretization satisfies the principle of summation-by-parts and is stable. Numerical experiments are presented to compare the accuracy of the second with fourth order summation-by-parts finite difference methods and to evaluate the efficiency of reverse time migration by using these two methods. As well, comparisons are performed between the fourth order accuracy summation-by-parts finite difference method and central finite difference method to illustrate the stability superiority of summation-by-parts operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.