Abstract
We designed and demonstrated a four-state programmable mid-infrared band-stop absorber that exploits two different phase-change materials. This programmability is possible by exploiting Fabry–Pérot resonances in a Ge2Sb2Te5 film and vanadium dioxide nanoparticles' (VO2 NPs) dual layer. The reflectivity trough can be tuned to four different infrared (IR) wavelengths from 1906 to 2960 nm by heating the structure to different temperatures. The near-perfect absorber is reconfigurable, lithography-free, industrially scalable, polarization-insensitive, and omnidirectional. Our strategy opens a path for programmable infrared photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.