Abstract

Glioblastoma multiforme (GBM) is a highly malignant human brain tumour for which no cure is available at present. Numerous clinical studies as well as animal experiments are under way with the goal being to understand tumour biology and develop potential therapeutic approaches. C6 cell glioma in the adult rat is a frequently used and well accepted animal model for the malignant human glial tumour. By combining standard analytical methods such as histology and immunohistochemistry with Fourier Transform Infrared (FTIR) microspectroscopic imaging and multivariate statistical approaches, we are developing a novel approach to tumour diagnosis which allows us to obtain information about the structure and composition of tumour tissues that could not be obtained easily with either method alone. We have used a “Stingray” FTIR imaging spectrometer to analyse and compare the compositions of coronal brain tissue sections of a tumour-bearing animal and those from a healthy animal. We have found that the tumour tissue has a characteristic chemical signature, which distinguishes it from tumour-free brain tissue. The physical-chemical differences, determined by image and spectral comparison are consistent with changes in total protein absorbance, phosphodiester absorbance and physical dispersive artefacts. The results indicate that FTIR imaging analysis could become a valuable analytic method in brain tumour research and possibly in the diagnosis of human brain tumours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.