Abstract
Integration of different therapeutic performances into one platform is an innovative development for using multiple applications in real-time. In this paper, for the first time we exploited the concurrent capacity of radio and photosensitizing in a theranostic nanoMOFs based on bismuth, zirconium, and porphyrin. The porosity of nanoMOFs provided the capability of doxorubicin loading and chemotherapy besides enhanced photodynamic and radiation therapy (PDT & RT). Its PEGylation and aptamer (MUC1) immobilization endowed the platform with high biocompatibility and targeted tumor killing, respectively. In vitro assay exhibited that this aptamer immobilized DOX-loaded PEGylated MOF (Apt@DOX) produced more toxicity against 4 T1 cells compared to non-targeted nanoparticles (NP@DOX), especially when the treatment combined with PDT or/and RT. In vivo experiment also provided great results for tumor growth, survival rate, and body weight for 4 T1 bearing mice injected by Apt@DOX in combination with irradiation by 660 nm laser and/or exposure to 3 Gy dosage of X-ray radiation. The CT imaging of injected mice with targeted and non-targeted bismuth-based MOF introduced this nanoplatform as a promising CT contrast agent. Resultantly, we can present our as-synthesized nanoplatform as an efficient multifunctional theranostics with the ability of multimodal therapy and diagnostic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.