Abstract
We consider the random motion of a particle that moves with constant finite speed in the space ℝ4 and, at Poisson-distributed times, changes its direction with uniform law on the unit four-sphere. For the particle's position, X(t) = (X1(t), X2(t), X3(t), X4(t)), t > 0, we obtain the explicit forms of the conditional characteristic functions and conditional distributions when the number of changes of directions is fixed. From this we derive the explicit probability law, f(x, t), x ∈ ℝ4, t ≥ 0, of X(t). We also show that, under the Kac condition on the speed of the motion and the intensity of the switching Poisson process, the density, p(x,t), of the absolutely continuous component of f(x,t) tends to the transition density of the four-dimensional Brownian motion with zero drift and infinitesimal variance σ2 = ½.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.